HIGH VELOCITY IMPLOSIONS ON PBFA Z J. S. De Groot^{1,2,3}, C. Deeney², K. G. Estabrook³, J. H. Hammer³, T. W. L. Sanford², R. B. Spielman², and A. Toor³ ¹Plasma Research Group and Department of Applied Science University of California, Davis, CA 95616 > ²Sandia National Laboratories P.O. Box 5800, Albuquerque, NM 87185-1193 ³Lawrence Livermore National Laboratory P. O. Box 808, Livermore, CA 94550 Implosions with velocities $\sim 2x10^8$ cm/sec are being designed for the PBFAZ accelerator at Sandia. Large initial diameter (~ 10 cm), uniform and distributed fill xenon gas puff loads are used. Snowplow, finite gyro radius, and ion-ion viscosity effects significantly reduce the total growth of the magneto-Rayleigh-Taylor instability. Initial rad-hydro non-LTE calculations show that many tens of kilojoules of xenon-L-shell and a few to ten kilojoules of K-shell (~ 30 keV) radiation should be produced. *Work Performed under the auspices of the U. S. Department of Energy by the Lawrence Livermore National Laboratory under Contract W-7405-ENG-48 and Sandia National Laboratories under Contract DE-AC04-94AL85000. Corresponding author: J. S. De Groot, Department of Applied Science, University of California, Davis, CA95616, email: jdegroot@raphael.engr.ucdavis.edu, fax: 916-7522444; poster session